Search results for "Methods: laboratory"

showing 9 items of 9 documents

Non-thermal processes in coronae and beyond

2012

This contribution summarizes the splinter session "Non-thermal processes in coronae and beyond" held at the Cool Stars 17 workshop in Barcelona in 2012. It covers new developments in high energy non-thermal effects in the Earth's exosphere, solar and stellar flares, the diffuse emission in star forming regions and reviews the state and the challenges of the underlying atomic databases.

Earth and Planetary Astrophysics (astro-ph.EP)High Energy Astrophysical Phenomena (astro-ph.HE)Sun: flareMethods: laboratoryStars: flareFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstronomy and AstrophysicAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsAstrophysics::Solar and Stellar AstrophysicsRadiation mechanism: non-thermalAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAtomic dataAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics - Earth and Planetary Astrophysics
researchProduct

Zeeman effect in sulfur monoxide: A tool to probe magnetic fields in star forming regions

2017

[Context] Magnetic fields play a fundamental role in star formation processes and the best method to evaluate their intensity is to measure the Zeeman effect of atomic and molecular lines. However, a direct measurement of the Zeeman spectral pattern from interstellar molecular species is challenging due to the high sensitivity and high spectral resolution required. So far, the Zeeman effect has been detected unambiguously in star forming regions for very few non-masing species, such as OH and CN.

Methods: laboratory: molecularlaboratory: molecular [Methods]Context (language use)ISM: moleculeRadiation01 natural sciences7. Clean energyArticlesymbols.namesakechemistry.chemical_compoundMethods: data analysis0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsPhysics::Atomic PhysicsSpectral resolutiondata analysis [Methods]010303 astronomy & astrophysicsmolecules [ISM]Astrophysics::Galaxy AstrophysicsCondensed Matter::Quantum GasesPhysicsZeeman effectSulfur monoxide010304 chemical physicsSpectrometerStar formationMolecular dataAstronomy and AstrophysicsAstronomy and AstrophysicISM: moleculesMagnetic fieldMagnetic fieldchemistrySpace and Planetary ScienceMagnetic fieldssymbolsAtomic physicsMethods: data analysi
researchProduct

Chemical Evolution of Interstellar Methanol Ice Analogs upon Ultraviolet Irradiation: The Role of the Substrate

2018

An important issue in the chemistry of interstellar ices is the role of dust materials. In this work, we study the effect of an amorphous water-rich magnesium silicate deposited onto ZnSe windows on the chemical evolution of ultraviolet-irradiated methanol ices. For comparison, we also irradiate similar ices deposited onto bare ZnSe windows. Silicates are produced at relatively low temperatures exploiting a sol-gel technique. The chemical composition of the synthesized material reflects the forsterite stoichiometry. Si-OH groups and magnesium carbonates are incorporated during the process. The results show that the substrate material does affect the chemical evolution of the ice. In particu…

PhysicsAstrochemistryastrochemistryExtinction (astronomy)methods: laboratory: molecularSubstrate (chemistry)Astronomy and AstrophysicsISM: moleculeAstronomy and AstrophysicPhotochemistryultraviolet: ISM01 natural sciencesChemical evolutionchemistry.chemical_compoundchemistrySpace and Planetary Science0103 physical sciencesUltraviolet irradiationdust extinctionMethanol010306 general physics010303 astronomy & astrophysicsThe Astrophysical Journal
researchProduct

SOFT X-RAY IRRADIATION OF PURE CARBON MONOXIDE INTERSTELLAR ICE ANALOGUES

2012

There is an increasing evidence for the existence of large organic molecules in the interstellar and circumstellar medium. Very few among such species are readily formed in conventional gas-phase chemistry under typical conditions of interstellar clouds. Attention has therefore focused on interstellar ices as a potential source of these relatively complex species. Laboratory experiments show that irradiation of interstellar ice analogues by fast particles or ultraviolet radiation can induce significant chemical complexity. However, stars are sources of intense X-rays at almost every stage of their formation and evolution. Such radiation may thus provide chemical changes in regions where ult…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaInterstellar icePhotodissociationInterstellar cloudAstronomy and AstrophysicsAstrophysicsRadiationmolecules | X-rays: ISM | methods: laboratory [ISM]Starschemistry.chemical_compoundSettore FIS/05 - Astronomia E AstrofisicachemistrySpace and Planetary ScienceISM: molecules | X-rays: ISM | methods: laboratoryAstrophysics::Earth and Planetary AstrophysicsIrradiationAstrophysics::Galaxy AstrophysicsOrder of magnitudeCarbon monoxide
researchProduct

Emission-Line Intensity Ratios in F[CLC]e[/CLC] [CSC]xvii[/CSC] Observed with a Microcalorimeter on an Electron Beam Ion Trap

2000

We report new observations of emission line intensity ratios of Fe XVII under controlled experimental conditions, using the National Institute of Standards and Technology electron beam ion trap (EBIT) with a microcalorimeter detector. We compare our observations with collisional-radiative models using atomic data computed in distorted wave and R-matrix approximations, which follow the transfer of the polarization of level populations through radiative cascades. Our results for the intensity ratio of the 2p6 1S0-2p53d 1P1 15.014 A line to the 2p6 1S0-2p53d 3D1 15.265 A line are 2.94 ± 0.18 and 2.50 ± 0.13 at beam energies of 900 and 1250 eV, respectively. These results are not consistent wit…

PhysicsMethods: laboratorySun: coronaDetectorTechniques: spectroscopicAstronomy and Astrophysicslaboratory; Stars: individual (Capella); Sun: corona; Techniques: spectroscopic; X-rays: general [Atomic data; Methods]PlasmaX-rays: generalIntensity ratioPolarization (waves)IonSettore FIS/05 - Astronomia E AstrofisicaStars: individual (Capella)Space and Planetary ScienceRadiative transferEmission spectrumAtomic physicsAtomic dataElectron beam ion trapThe Astrophysical Journal
researchProduct

Soft X-Ray Irradiation of Methanol Ice: Implication for H2CO Formation in Interstellar Regions

2010

We performed 0.3 keV soft X-ray irradiation of a methanol ice at 8 K under ultra-high vacuum conditions. To the best of our knowledge, this is the first time that soft X-rays are used to study photolysis of ice analogs. Despite the low irradiation dose of 10{sup -6} photons molecule{sup -1}, the formation of formaldehyde has been observed. The results of our experiments suggest that X-rays may be a promising candidate to the formation of complex molecules in regions where UV radiation is severely inhibited.

PhysicsPhotodissociationFormaldehydeAstronomy and AstrophysicsRadiationPhotochemistryChemical reactionDecompositionchemistry.chemical_compoundISM: molecules – methods: laboratory – X-rays: ISMSettore FIS/05 - Astronomia E AstrofisicachemistrySpace and Planetary ScienceMoleculeIrradiationMethanolAtomic physics
researchProduct

Rare isotopic species of hydrogen sulfide: the rotational spectrum of H236S

2014

The rotational spectrum of the 36 S-bearing isotopologue of hydrogen sulfide (H2S) has been investigated for the first time in the 167 GHz−1.6 THz frequency range, thus providing an accurate and reliable set of spectroscopic parameters. The experimental investigation was backed up by state-of-the-art quantum-chemical calculations, which also allowed us to demonstrate the incorrectness of the previously reported spectroscopic constants. The present results are of suitable accuracy to attempt the astrophysical detection of the isotopic species under consideration. Finally, reliable predictions for the spectroscopic constants of other rare isotopologues of H2S, namely the mono- and bi-deuterat…

Physicsmolecular dataHydrogen sulfideAnalytical chemistrymethods: laboratory: molecularAstronomy and AstrophysicsISM: moleculeAstrophysicschemistry.chemical_compoundchemistrySpace and Planetary ScienceRotational spectrumsubmillimeter: ISMIsotopologuemethods: data analysitechniques: spectroscopicAstronomy & Astrophysics
researchProduct

Laboratory astrophysics survey of key x-ray diagnostic lines using a microcalorimeter on an electron beam ion trap

2000

Cosmic plasma conditions created in an electron beam ion trap (EBIT) make it possible to simulate the dependencies of key diagnostic X-ray lines on density, temperature, and excitation conditions that exist in astrophysical sources. We used a microcalorimeter for such laboratory astrophysics studies because it has a resolving power ≈1000, quantum efficiency approaching 100%, and a bandwidth that spans the X-ray energies from 0.2 keV to 10 keV. Our microcalorimeter, coupled with an X-ray optic to increase the effective solid angle, provides a significant new capability for laboratory astrophysics measurements. Broadband spectra obtained from the National Institute of Standards and Technology…

Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical Phenomenachemistry.chemical_elementFizikai tudományokAstrophysicsSpectral lineNeonTermészettudományokAtomic processeIonizationPhysics::Atomic PhysicsAtomic dataNuclear and High Energy PhysicPhysicsArgonKryptonAstronomy and AstrophysicsLine: IdentificationPlasmaX-rays: GeneralchemistrySpace and Planetary ScienceAstrophysical plasmaMethods: Laboratory plasmaAtomic physicsElectron beam ion trap
researchProduct

Laboratory measurements and astronomical search for the HSO radical

2016

[Context] Despite the fact that many sulfur-bearing molecules, ranging from simple diatomic species up to astronomical complex molecules, have been detected in the interstellar medium, the sulfur chemistry in space is largely unknown and a depletion in the abundance of S-containing species has been observed in the cold, dense interstellar medium. The chemical form of the missing sulfur has yet to be identified.

inorganic chemicalsMethods: laboratory: molecularHydrogenLine: identificationlaboratory: molecular [Methods]chemistry.chemical_elementContext (language use)ISM: moleculeAstrophysics7. Clean energy01 natural sciencesArticleAbundance (ecology)0103 physical sciencesPhysics::Chemical Physicsidentification [Line]Spectral resolutionSubmillimeter: ISM010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysicsmolecules [ISM]Radio lines: ISMPhysics010304 chemical physicsMolecular dataTriatomic moleculeISM [Submillimeter]AstronomyAstronomy and AstrophysicsAstronomy and AstrophysicSulfurDiatomic moleculeISM: moleculesISM [Radio lines]Interstellar mediumchemistry13. Climate actionSpace and Planetary ScienceAstronomy & Astrophysics
researchProduct